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A B S T R A C T

The simulated matter distribution on large scales is studied using core-sampling, cluster

analysis, inertia tensor analysis and minimal spanning tree techniques. Seven simulations in

large boxes for ®ve cosmological models with COBE-normalized CDM-like power spectra are

studied. A wall-like superlarge-scale structure with parameters similar to the observed one is

found for the OCDM and LCDM models with Qmh � 0:2±0:3. In these simulations, the rich

structure elements with a typical value for the largest extension of ,�30 ÿ 50� hÿ1 Mpc

incorporate ,40 per cent of matter with overdensity of about 10 above the mean. These rich

elements are formed by the anisotropic non-linear compression of sheets with an original

size of ,�15±25� hÿ1 Mpc. They surround low-density regions with a typical diameter

,�50±70� hÿ1 Mpc.

The statistical characteristics of these structures are found to be approximately consistent

with observations and theoretical expectations. The cosmological models with higher matter

density Qm � 1 in CDM with Harrison±Zeldovich or tilted power spectra cannot reproduce

the characteristics of the observed galaxy distribution because of the very strong disruption of

the rich structure elements. Another model with a broken scale-invariant initial power

spectrum (BCDM) does not show enough matter concentration in the rich structure elements.

Key words: methods: numerical ± cosmology: theory ± dark matter ± large-scale structure of

Universe.

1 I N T R O D U C T I O N

The phenomenon of superlarge-scale structure (SLSS) was ®rst

observed as a rare peculiarity in the visible galaxy distribution, with

extreme parameters. Examples of this include the Great Void

(Kirshner et al. 1983), the Great Attractor (Dressler et al. 1987),

the Great Wall (de Lapparent, Geller, & Huchra 1988; Ramella,

Geller, & Huchra 1992), and the Pisces±Perseus supercluster

(Giovanelli & Haynes 1993). Several nearby superclusters of

galaxies were described by Oort (1983a,b). SLSS was also found

in deep pencil-beam redshift surveys (Broadhurst et al. 1990;

Willmer et al. 1994; Buryak, Doroshkevich & Fong 1994; Bellanger

& de Lapparent 1995; Cohen et al. 1996) as rich galaxy clumps with

typical separations in the range of 60±120 hÿ1 Mpc (h is the Hubble

parameter in units of 100 km sÿ1 Mpcÿ1).

Recently the analyses of rich galaxy surveys with an effective

depth ,�200 ÿ 400� hÿ1 Mpc, such as the Durham/UKST Galaxy

Redshift Survey (Ratcliffe et al. 1996) and the Las Campanas

Redshift Survey (LCRS, Shectman et al. 1996), have established

the existence of wall-like SLSS as a typical phenomenon in the

visible galaxy distribution incorporating ,40±50 per cent of

galaxies (Doroshkevich et al. 1996, hereafter LCRS1; Doroshke-

vich et al. 1997b, hereafter LCRS2; 1998a; 1999). The wall-like

SLSS consists of structure elements with a typical diameter

,�30±50� hÿ1 Mpc surrounding low-density regions (LDR) with

a similar typical diameter DLDR , �50±70� hÿ1 Mpc. Within the

wall-like SLSS elements the observed galaxy distribution is also

inhomogeneous (see e.g. ®g. 5 of Ramella et al. 1992), and galaxies

are concentrated in high-density clumps and ®laments.

In LDR the galaxies are found to be concentrated within a

random network of ®laments. In distinction to typical wall-like

superclusters, the galaxy distribution in LDR is predominantly one-

dimensional with a mean separation of ®laments ,10±15 hÿ1 Mpc

(LCRS1), and we call this network large-scale structure (LSS). The

LSS also incorporates ,50 per cent of galaxies and is clearly seen

in many redshift catalogues of galaxies (see e.g. de Lapparent et al.

1988). These results extend the range of investigated scales in the

galaxy distribution up to ,100 hÿ1 Mpc.

While LSS was predicted by the non-linear theory of gravita-

tional instability (Zel'dovich 1970), and was reproduced in simula-

tions before its discovery in observations (see, for reference,

Shandarin & Zel'dovich 1989), the observation of the rich and

typically wall-like SLSS was quite unexpected. Thus, in simula-

tions the representative SLSS was found only recently for a CDM

model with low density and a cosmological constant (LCDM,

Cole et al. 1997). This simulation demonstrates that for suitable
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parameters of cosmological models the formation of the wall-like

SLSS is compatible with the standard CDM power spectrum of

Gaussian initial perturbations.

The formation and evolution of structure on all scales is

described by an approximate theoretical model (DemianÂski &

Doroshkevich 1998a,b) based on the Zel'dovich non-linear theory

of gravitational instability (Zel'dovich 1970,1978; Shandarin &

Zel'dovich 1989). The model shows that the SLSS formation can be

related to matter infall into the large wells of the gravitational

potential of the initial perturbations. This model connects the

structure parameters with the main parameters of the underlying

cosmological scenario and the initial power spectrum. It shows that

the impact of large-scale perturbations is important throughout all

evolutionary stages. In particular, the in¯uence of these pertur-

bations modulates the merging of smaller structure elements,

promoting evolution within the SLSS elements and depressing it

in LDR.

The simulations are able to take into account this interaction

throughout all evolutionary stages and, therefore, are the most

suitable way to study the properties and evolution of LSS and

SLSS. This implies, however, that the simulations need to be

performed in very large boxes both to provide us with reasonable

statistics of the walls and, of particular importance, to describe

correctly the large-scale part of the initial power spectrum of

perturbations, responsible for the wall formation and the mutual

interaction of small- and large-scale perturbations. In practice, this

means that we need extreme parameters in the simulations. On the

other hand, in order to compare various cosmological models a

broad set of simulations has to be prepared.

Here results are presented from the analysis of simulations using

®ve cosmological models. It is shown that the models with high

matter density, Qm , 1, cannot reproduce adequately the observed

properties of the large-scale matter distribution. The models with

lower matter density, in particular the OCDM and LCDM models,

seem to be more promising, since they can reproduce the general

observed characteristics of both the LSS and the SLSS. In these

models the rich structure elements, formed by a non-linear matter

compression, contain a signi®cant matter fraction, frse , 0:4±0:5,

which can be easily identi®ed. A more detailed investigation of non-

linear matter evolution on large scales is a further goal of this paper.

The small-scale matter clustering resulting in the destruction of

structure elements restricts the class of cosmological models that

are capable of reproducing the observed LSS and SLSS. The

instability of a sheet-like matter distribution similar to the observed

and simulated SLSS was considered (in the linear approximation)

by Doroshkevich (1980) and Vishniac (1983), and it was recently

simulated by Valinia et al. (1997).

Following our previous papers (LCRS1; LCRS2; Doroshkevich

et al. 1997a) we concentrate on the geometrical properties of the

matter distribution, in particular the proper sizes and spatial

distribution of ®laments and wall-like structure elements. The

popular correlation analysis is not so useful at scales

> 10 hÿ1 Mpc, discussed below, and other techniques provide us

with better results. We employ the core-sampling approach intro-

duced by Buryak et al. (1994), standard cluster analysis supple-

mented by the inertia tensor technique (Vishniac 1986; Babul &

Starkman 1992), analysis of the variations of number of clusters

versus linking length (NCLL method, LCRS2), and the minimal

spanning tree (MST) technique (Barrow, Bhavsar & Sonoda 1985;

van de Weygaert 1991). These methods were utilized recently for

the investigation of structures in the LCRS (cf. LCRS1 and LCRS2)

and Durham/UKST redshift surveys (Doroshkevich, Fong &

Makarova 1999). These results will be used for comparison with

the structure parameters derived from simulations. The different

methods are complementary to each other, and, thus, they allow us

to characterize the simulated matter distribution in different impor-

tant aspects.

The observed distribution of galaxies and the simulated distribu-

tion of the dark matter (DM) cannot be identical, as the galaxy

formation is sensitive to additional factors (e.g. to the reheating)

and, moreover, galaxies probably mark only the highest peaks of

density perturbations. This means that some parameters of DM

structure elements such as their overdensity and proper sizes can

differ from those found in observational catalogues. The compara-

tive analysis performed for one simulation (Doroshkevich et al.

1998a) con®rms that in some respect the spatial distributions of DM

and `galaxies' are different. A more detailed comparison of the

observed and simulated matter distribution implies an identi®cation

of `galaxies' in the simulated DM distribution. This means that a

certain bias model needs to be utilized (see, e.g., discussions in

Sahni & Coles 1995 and Cole et al. 1998). Both problems are,

however, equally important, and the distributions of both the

galaxies and the DM must be studied.

This paper is organized as follows. The simulations and the

analysis techniques utilized are brie¯y described in Sections 2 and

3. In Section 4 the general characteristics of the considered

simulations are discussed that allow us to discriminate roughly

between the cosmological models and to select the most realistic

ones for a more detailed investigation. Our main results are

presented in Sections 5 and 6. Section 7 is devoted to the compar-

ison of the DM distribution with theoretical expectations, and in

Section 8 we discuss mock galaxy catalogues using some simple

bias models. The conclusion and a discussion can be found in

Section 9.

2 S I M U L AT I O N S

We used ®ve cosmological models as a basis for our analysis. The

COBE-normalized SCDM model is taken as a reference model

despite its dif®culties in explaining already standard measures of

galaxy clustering such as the power spectrum and the correlation

function of galaxies and galaxy clusters (cf. e.g. Ostriker, 1993).

Alternative models with Qm � 1 include modi®cations of the

primordial power spectrum, in particular by introducing a tilt

~k0:9 of the power spectrum (TCDM), or a break at a certain

scale (BCDM). Both are in¯ation-motivated, using either an expo-

nential in¯ation potential (Lucchin & Matarrese 1985), or a double

in¯ation scenario (GottloÈber, MuÈller & Starobinsky 1991). The

BCDM is speci®ed by two parameters, the location of the break at

kÿ1
break � 1:5 hÿ1 Mpc, and the relative power on both sides of the

break, D � 3. These parameters were originally chosen to obtain

optimal linear ®ts to the various large-scale structure observations

(GottloÈber, MuÈcket & Starobinsky 1994), and later tested against

N-body simulations (Amendola et al. 1995; Kates et al. 1995;

Ghigna et al. 1996; Retzlaff et al. 1998). Both TCDM and BCDM

models seemed to be promising since they have reduced power at

galactic scales with respect to the COBE-normalized SCDM model.

Furthermore, two models are studied which are based on the

wide range of observations pointing to a lower matter density in the

Universe. First, we study an OCDM model with Qm � 0:5 violating

the in¯ationary paradigm of a spatially ¯at universe. Secondly, we

take a model with a cosmological constant, which has Qm � 0:35

and a vacuum energy leading again to a spatially ¯at universe. This

LCDM model bears some advantage in alleviating the tight age
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constraint of the universe. For all models the standard para-

metrization of the CDM transfer function of Bardeen et al. (1986,

hereafter BBKS) was used. In Table 1 the main parameters of the

simulations are listed, including the matter density Qm, the dimen-

sionless Hubble constant h, the box size Lbox, the particle number Np

and the cell number Ncell. Two models (SCDM and LCDM) were

simulated with different resolutions and with slightly different

initial amplitudes.

The power spectra were normalized according to the two-year

COBE measurements following Bunn, Scott & White (1995)

(SCDM1, TCDM, BCDM, and LCDM1), or to the four-year data

according to the description of Bunn & White (1997) (SCDM2,

OCDM, LCDM2), in both cases assuming pure adiabatic perturba-

tions and a baryon content of Qb h2
� 2 ´ 10ÿ2 as predicted by big

bang nucleosynthesis (see, e.g., Schramm 1998). Our later discus-

sion will show that neither the smaller amplitude of the four-year

normalization nor the contribution of gravitational waves and/or

other inhomogeneities to the COBE signal in¯uence signi®cantly

the main conclusions. The amplitude of perturbations is character-

ized by the mass variance for the linear spectrum at the scale

8 hÿ1 Mpc, j8, and the three-dimensional velocity dispersion, jvel,

gained from all dark matter particles in the simulation.

The simulations were run in boxes of comoving size

Lbox � 500 hÿ1 Mpc and Lbox � 400 hÿ1 Mpc, respectively, to pro-

vide good statistics of perturbations in the range of wavenumbers

kÿ1 , �10±30� hÿ1 Mpc responsible for the SLSS formation and,

therefore, to improve the statistical characteristics of SLSS elements

and the description of the interaction of small- and large-scale

perturbations. For such boxes the formation of the majority of

structure elements is described by higher harmonics of the primordial

density waves, with l $ 8±10. We use the particle mesh (PM) code,

described in more detail in Kates et al. (1995) and Retzlaff et al.

(1998), with Np � 3003 or 2563 particles in Ncell � 6003 or 5123 grid

cells, respectively. These parameters provide a resolution

,0:9 hÿ1 Mpc and a mass resolution ,1±3 ´ 1011 M(.

Most statistics can be calculated only for subsamples of the huge

data sets. Therefore, we mostly used slices of thickness 50 hÿ1 Mpc

of the simulation box, which are about 10 per cent of the complete

volume. Even this volume provides us with a reasonable represen-

tation of the SLSS elements. This high stability of structure

parameters is a direct consequence of the large box size used. To

test the reliability, we repeated the analysis for different slices and

constructed some statistics for the full volume taking the LCDM1

model. The main difference between the analysis of the full sample

and slices is a variations of the mean velocity dispersion of clusters

by 5±7 per cent. Similar differences are characteristic of different

realizations of the same cosmological model (SCDM1 versus

SCDM2, LCDM1 versus LCDM2). Below we give the basic results

for the larger simulations only; they are denoted as SCDM and

LCDM.

The comparison of simulated and observed parameters of the

SLSS has to be done in the redshift space while the theoretical

predictions are usually made in the comoving space. Hence, our

analysis was performed twice. In the case of redshift space, we

added an apparent displacement corresponding to the peculiar

velocity of the particles along one axis divided by the Hubble

constant. The comparison of results from real and redshift space

allows us to establish the in¯uence of the velocity dispersion on the

®nal estimates.

Fig. 1 shows a wedge diagram of the simulated matter distribu-

tion in redshift space for the LCDM model at redshifts z � 0. To

each particle we assigned a luminosity chosen at random from a
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Table 1. Parameters of the simulations. Qm is the matter density, h is the

dimensionless Hubble constant, Lbox is the box size in hÿ1 Mpc, Np and Ncell

are the particle and cell numbers, j8 is the mass variance for the linear

spectrum at the scale 8 hÿ1 Mpc, jvel is the variance of the linear particle

velocity in km sÿ1.

model Qm h Lbox Np Ncell j8 jvel

SCDM1 1 0.5 500 3003 6003 1.05 1157

SCDM2 1 0.5 400 2563 5123 1.12 1127

TCDM 1 0.5 500 3003 6003 1.25 1293

BCDM 1 0.5 500 3003 6003 0.60 714

OCDM 0.5 0.6 500 3003 6003 0.74 550

LCDM1 0.35 0.7 500 3003 6003 1.12 913

LCDM2 0.35 0.7 400 2563 5123 1.30 873

Figure 1. Simulated point distribution in redshift space for LCDM model at redshift z � 0.



Schechter luminosity function typical for the LCRS galaxies (Lin

et al. 1996). We projected the particles into a wedge of angular

extension 808 ´ 1:58, and we kept simulated galaxies in the magni-

tude range 14 < m < 18, about the range of the LCRS. The mock

sample contains about 7500 galaxies. The ®gure illustrates that the

overdense regions form almost a percolating system, with huge

structured systems between radial velocities of 10 000±

40 000 km sÿ1. A sparse ®lamentary matter distribution occupies

the low-density regions.

3 C O R E - S A M P L I N G , C L U S T E R A N A LY S I S ,

A N D M I N I M A L S PA N N I N G T R E E

T E C H N I Q U E S

In this paper we are interested in the investigation of large-scale

structure, and speci®c methods are to be used in order to character-

ize the simulated matter distribution. These methods are not so

popular as, for example, the correlation analysis, but they are well

de®ned and allow us to characterize the matter distribution on large

scales comparable with observations and with the scales predicted

by theoretical considerations.

3.1 Core-sampling approach

The core-sampling method proposed by Buryak et al. (1994) was

described in detail in LCRS1 and tested with Voronoi tesselations

by Doroshkevich, GottloÈber & Madsen (1997c). It allows us to

discriminate between ®lamentary and sheet-like structure elements

and to ®nd two quantitative characteristics of the structure, namely

the surface density of ®laments, jf , that is the mean number of

®laments crossing a randomly oriented unit area (i.e. 1 hÿ2 Mpc2),

and the linear density of sheets, js, that is the number of sheets

crossing the unit length (i.e. 1 hÿ1 Mpc) of a random straight line.

These parameters are equivalent to the mean separation between

sheet-like structure elements, Ds, and ®laments, Df :

Ds � 1=js; Df � jÿ1=2
f ; �3:1�

i.e. these lengths represent the mean free path between sheet-like

and ®lamentary structure elements.

The core-sampling method also allows us to determine the

masses and velocities of structure elements that intersect a sampling

core, i.e. it provides the surface mass density and dynamical

characteristics of structure elements. These parameters are used

for the comparison with theoretical expectations.

3.2 Minimal spanning tree technique

The minimal spanning tree (MST) is a unique network associated

with a given point sample and connects all points of the sample to a

tree in a special and unique manner. Some de®nitions and capabil-

ities of this approach are described by Barrow, Bhavsar & Sonoda

(1985) and van de Weygaert (1991). Here we will restrict our

investigation to the analysis of the frequency distribution of the MST

edge lengths WMST�l� (the FDMST method). The potential of the

MST approach is not exhausted by this application. It allows us to

characterize, in particular, the morphology of structure elements

and the typical size of the structure network.

At large distances any correlations between the particle positions

are small, and it is expected that the edge length distribution

WMST�l� is similar to that of a Poisson distribution. For ®laments,

however, this distribution will be dominated by a Poisson

distribution with one-dimensional support (1D), whereas for

sheet-like elements a nearly two-dimensional (2D) random point

distribution is typical. This means that the function WMST�l� can be

used to characterize statistically the dominant point distribution in

the sample. To do this, the FDMST can be ®tted to the six-parameter

function

WMST�x� � ÿW0

dFf

dx
eÿFf �x�; x � l=hlMSTi; �3:2�

Ff�x� � �b1xp1 � b2xp2 �
p3 ;

p�x� �
x

Ff

dFf

dx
� p3

p1b1xp1 � p2b2xp2

b1xp1 � b2xp2
;

where l and hlMSTi are the edge lengths and the mean edge length of

the tree, and W0 provides the normalization of the FDMST. The

function F represents a power law both for small and large x, but it

allows a continuous variation of the power index p�x� with the edge

lengths x.

Here we are mainly interested in the power index p�x� for the

larger x that characterizes the underlying geometry of the point

distribution on large scales. Poisson point distributions with 1D and

2D support are characterized by the power indices p � 1 and 2,

respectively. Therefore, the asymptote of the function p�x� at large x

characterizes the geometry of the structure elements, and it can be

compared with similar parameters recently found for the observed

galaxy distribution (LCRS2). This approach was tested with the

simulations of 1D, 2D and 3D Poissonian-like point distributions.

3.3 Cluster analysis and variations of the number of clusters

versus linking length ± the NCLL method

The standard cluster analysis (friend-of-friends method) is used

widely in numerical simulations and is well known (see, e.g. Sahni

& Coles 1995). Here we employ it, ®rst of all, in order to de®ne the

structure elements for a more detailed investigation of their proper-

ties. The cluster analysis can also be used for the description of the

matter distribution on large scales. The function WMST�l� is closely

connected with the number of clusters N�t�
cl �rlink� because

N�t�
cl �rlink� � Np

�¥

rlink

WMST�l�dl; �3:3�

where Np is the number of points in the sample under investigation.

Therefore, the FDMST and NCLL approaches are similar in many

respects.

We use a ®ve-parameter ®t of the cluster number versus linking

length relations, N�t�
cl �rlink�:

Ncl�b� � Np eÿFf �b�; b �
4p

3
npr3

link

� �1=3

: �3:4�

Here Ff�b� is de®ned by (3.2), b is the dimensionless linking length,

b1; b2; p1; p2 and p3 are dimensionless ®t parameters, and np is the

3D number density of points.

Here we are mainly interested in the variation of the power index

p�b� at large b. This method is complementary to the FDMST

analysis, and it allows us to get an independent ®t to the power index

p�b� at large b.

The NCLL method can also be extended, and, for the more

detailed characteristics of the matter distribution, the variation of

single particles, doublets, triplets and other clusters versus linking

length can be considered as well. In this paper, we consider only the

total number of clusters N�t�
cl �rlink� for the comparison with results

obtained with the FDMST.
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3.4 Inertia tensor method

The sizes of structure elements can be found with the inertia tensor

method (Vishniac 1986; Babul & Starkman 1992). For each cluster

the inertia tensor Iij is expressed as

Iij �
5

Nmem

X
Nmem

�qi ÿ q�0�i ��qj ÿ q�0�j �; �3:5�

where qi and q�0�i are the coordinates of the particles and of the

centre of mass of the cluster, respectively, and Nmem is the number of

cluster members. The conventional normalization 5 has been taken

to be consistent with a homogeneous ellipsoid. Hence, the principal

values of the tensor Iij, namely the length (diameter), L, the width,

w, and the thickness, t (L $ w $ t), give us objective estimates of

the cluster size and of the volume, V , and of the mean overdensity of

cluster, d

V �
p

6
Lwt; d �

Nmem

npV
: �3:6�

where Nmem is the number of points in the cluster.

This raw estimate is clearly of limited accuracy, but it is easy to

calculate. The reliability of this estimate is high for compact regular

clusters, and in general it depends on the cluster shape, in particular

on its lumpiness (see, e.g., Sathyaprakash et al. 1998). We found

from the simulations, that for large linking lengths, clusters are very

lumpy in their outer regions. Then the ellipsoidal approximation

leads to an arti®cial growth of the width and the thickness of the

clusters. However, the cluster diameter L provides a stable char-

acteristic of the cluster size.

4 R I C H S T R U C T U R E E L E M E N T S I N

S I M U L AT I O N S

The cluster analysis shows that rich structure elements (RSE) are

usually represented by rather compact wall-like objects, and our

methods give us more reliable information about their properties,

some of which can be directly connected with the parameters of the

cosmological model (see discussion in Section 7). In contrast, the

discrimination and identi®cation of poor structure elements is

always dif®cult, as in the observed galaxy distribution they usually

represent a ®lamentary component in a random network. This

means that the identi®cation and statistical description of such

elements is often uncertain as their shapes are entangled due to

many irregular branches.

Because of this, in this paper we mainly give our attention to the

RSE. Some statistical parameters of the ®lamentary component

have nonetheless been found. They are discussed below.

4.1 Identi®cation of structure elements in simulations

The large size of the computation box allows us to obtain a

representative set of large clusters which can be associated with

the observed RSE. The clusters were found for different richness

thresholds Nthr, and for varying linking lengths rlink. The linking

length is directly connected with the density threshold bounding

structure elements, nthr. Indeed, no particles of a cluster are

separated from the neighbour by more than the distance rlink,

therefore a lower limit to the cluster density is

nthr $ npbÿ3; �4:1�

where b is given by (3.4).

For more interesting models the parameters Nthr and b, used for

the identi®cation of structure elements, as well as the number of

identi®ed structure elements, Nrse, are listed in Table 2. We also give

the value bperc which corresponds to the linking length when the

largest cluster of the sample accumulates ,�25±30� per cent of the

points. This is similar to, but not the exact percolation threshold

(Klypin & Shandarin 1992). The smooth shape of FDMST (no

break or cut-offs, see the discussion in Section 6.6) shows that in the

simulated matter distribution, even for large b a signi®cant fraction

of points is not accumulated by the largest cluster. Nevertheless, the

fast growth of the largest cluster distorts the cluster properties,

therefore smaller linking lengths must be used to obtain the typical

characteristics of rich structure elements.

A few parameters for the RSE are applied to discriminate

between cosmological models, to select the most realistic models

for a detailed analysis, and to ®nd a reasonable range of the

threshold for the discrimination between RSE and LDR. These

parameters, also listed in Table 2, are the fraction of matter

accumulated by such structure elements, frse, the overdensity drse

given by (3.6), the velocity dispersion of these structure elements,

ju, and the velocity dispersion of matter within the structure

elements along the three principal axes of their inertia tensor,

j1; j2; j3. The overdensity, the velocity dispersion of the clusters

and the inner velocity dispersion were averaged over all clusters in

the sample within the range of richness under consideration. Each

cluster was weighted by the number of cluster members, Nmem, as

this provides parameters typical for the majority of considered

points. These characteristics are sensitive to Qm and h, and to the
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Table 2. Parameters of rich structure elements in comoving (cm) and redshift (rs) space. rlink, b are the threshold linking lengths, bperc

characterizes (approximate) percolation, Nrse, frse and drse are the number and fraction of accumulated particles and mean overdensity,

ju is the dispersion of velocity of RSE and j1,j2 and j3 are the velocity dispersion of matter within the structure elements along the

three principal axes of their inertia tensor.

model z rlink b3 b3
perc Nrse frse drse ju j1 j2 j3

hÿ1 Mpc km sÿ1 km sÿ1 km sÿ1 km sÿ1

SCDM-cm 0 0.75 0.38 2.22 1370 0.46 43.1 670 690 670 590

SCDM-rs 0 0.75 0.38 1.95 1134 0.45 10.2 610 716 743 703

OCDM-cm 0 0.95 0.77 1.39 474 0.39 4.0 416 333 341 343

OCDM-rs 0 0.95 0.77 1.45 469 0.44 3.8 400 325 340 344

LCDM-cm 0 1. 0.90 1.52 752 0.42 38.1 596 610 582 514

LCDM-rs 0 1. 0.90 1.30 697 0.45 14.1 548 565 590 530

LCDM-cm 1 1. 0.90 1.37 561 0.24 12.1 496 510 527 500

LCDM-rs 1 1. 0.90 1.44 599 0.28 10.1 458 473 512 497



amplitude and the shape of power spectrum. They are found for all

simulations. The overdensity and the component of the inner

velocity dispersion along the axis with the smallest component of

the inertia tensor, j3, are plotted in Figs 2 and 3 for SCDM, OCDM

and LCDM models.

4.2 Overdensity and velocity dispersions of rich structure

elements

The simulated characteristics of the RSE must be compared with

the observed parameters. The velocity dispersion within wall-like

structure elements was roughly estimated by Oort (1983a) to be

jobs
v , 350±400 km sÿ1. An estimate of the bulk velocity

jobs
u , 400 km sÿ1 can be taken from Dekel (1997). The fraction

of galaxies accumulated by the RSE, frse, and the corresponding

overdensity, drse, were estimated for the LCRS as frse , 0:4±0:5 and

drse , 10 (LCRS1 and LCRS2). The spatial distribution of RSE can

be characterized by the mean separation of RSE along a random

straight line, which was found as ,�50±60� hÿ1 Mpc in the LCRS.

Using these estimates, we can also ®nd an approximate demarcation

between RSE and LDR.

The analysis shows that the mean velocity of the clusters hui is

negligible in comparison with the velocity dispersion ju. This

dispersion depends only weakly on the cluster richness, but it is

sensitive to parameters of the cosmological model. Because of the

vortex-free character of the initial velocity ®eld the velocity u

measures the random variation of the gravitational potential over

the cluster and, therefore, the value ju is approximately propor-

tional to the amplitude of initial perturbations given by the mean

velocity dispersion, jvel, listed in Table 1. Theoretical considera-

tions (DemianÂski & Doroshkevich 1999b) describe this connection

quantitatively (see also the discussion in Section 7). It can be

expected that ju is slightly smaller in the MDM model where the

fraction of hot DM particles makes the potential distribution more

smooth. For the SCDM and TCDM models, the dispersions ju

exceed the observed value by about a factor of 2, and by a factor of

about 1.5 for LCDM model. For the OCDM and BCDM models,

the simulated and observed velocity dispersions are in general

consistent.

The mean overdensity and the inner velocity dispersion, j3, along

the shorter cluster axis are very sensitive both to the cosmological

model and to the subsample of clusters under investigation. For the

most realistic models, they allow us to estimate a suitable range for

the linking length, rlink, and the threshold richness of clusters, Nthr.

For three models the overdensity, drse, and the inner velocity

dispersion, j3, are plotted in Figs 2 and 3 versus the matter fraction

of the clusters, using ®ve richness thresholds, Nthr. In order to

compare the parameters of the clusters with observations, the

analysis has been performed in redshift space. The observed

estimates of overdensity, galaxy concentration and velocity disper-

sion along the shorter principal axis of RSE, j3, are plotted in Figs 2

and 3 as well.

The simulated values of the velocity dispersion j3 exceed the

theoretical expectations (DemianÂski & Doroshkevich 1999b) due to

the wall disruption and the formation of high-density clumps. This

is clearly seen from the isotropy of dispersion listed in Table 2 (we

always have j1 , j2 , j3). The rate of this disruption depends on

the degree of matter compression and, therefore, on the mean

overdensity of the clusters.

The simulations with Qm � 1 (SCDM, TCDM and BCDM

models) cannot reproduce the main observed characteristics of

the RSE over the range of considered richness thresholds

100 < Nthr < 1000 and over a reasonable range of linking lengths.

For the SCDM and TCDM models, a reasonable matter concentra-

tion is connected with a very large velocity dispersion. Therefore,

even moderate changes in the power spectrum normalization of

these models cannot improve the parameters of the rich clusters. For

the BCDM model, a reasonable velocity dispersion is accompanied
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Figure 2. Overdensity drse in redshift space versus matter fraction concen-

trated within RSE, frse, for ®ve richness thresholds: Nthr � 100 (dots),

Nthr � 200 (dashed line), Nthr � 300 (stars), Nthr � 500 (long-dashed

line), Nthr � 1000 (open squares). Dotted lines show the observed para-

meters of RSE.

Figure 3. Velocity dispersion j3 in redshift space versus matter fraction

concentrated within RSE, frse, for the same ®ve richness thresholds. Dotted

lines show the observed parameters of RSE.



by a very small matter concentration within the RSE. For this model

a large bias between the galaxies and the dark matter distribution (a

large factor ,2±3 is required) could, in principle, reduce this

disagreement. The same effect can also be reached by an increase

of the amplitude of the power spectrum by a factor of about 2 in

comparison with the normalization used. Thus, already the ®rst step

of our analysis shows that probably models with Qm � 1 cannot be

considered as realistic.

Models with a smaller matter density Qm � 0:5 (OCDM) and

Qm � 0:35 (LCDM) show better results. For the LCDM simulation

reasonable structure parameters are found for b3
� 0:90 and

Nthr � 200. Some excess in the velocity dispersion ju and in j1,

j2 and j3 (a factor of about 1.5) points to the over-evolution of this

model. Better results can be reached by the variation of the DM

composition and/or for smaller values of the cosmological para-

meters Qm and h. For the simulated OCDM model, all parameters of

RSE at b3
� 0:77 and Nthr � 200 are consistent with the observed

ones in the range of our precision. A de®cit in the overdensity

(drse , 4) is within the range of a possible large-scale bias, i.e. a

higher concentration of luminous matter (galaxies) in rich

structure elements in comparison with the concentration of DM

(see Section 8).

The considered low-density models are the most promising for a

detailed investigation. In these models the COBE normalization is

also consistent with the observed characteristics of rich clusters of

galaxy (cf., e.g. Cole et al. 1997; Bahcall & Fan 1998). The curves

in Figs 2 and 3 allow us to establish a rough boundary between the

RSE and LDR, both in terms of the variables Nthr and rlink (or b), and

in terms of physical variables frse and drse � hnrsei=hnpi. Further-

more, detailed investigation of RSE and LDR allow us to test for

and to correct this demarcation.

A signi®cant redshift dependence of the main parameters of RSE

is found for LCDM models at 0 # z # 3. Thus, already at z � 1 a

smaller matter concentration is found, and at z � 3 the matter

fraction in RSE, frse , 0:03±0:05, is negligible. This means that for

these models the RSE are sensitive indicators of the initial

amplitude of perturbations.

5 M E A N S E PA R AT I O N O F F I L A M E N TA RY

A N D S H E E T- L I K E C O M P O N E N T S I N T H E

S C D M , O C D M A N D LC D M M O D E L S

In this section, properties of simulated structures are examined with

the core-sampling method. This method allows us to ®nd the mean

separations between ®lamentary and sheet-like structure elements,

respectively. The analysis of samples obtained by systematic

rejection of sparser structure elements allows us to reveal the

characteristics of typical structures. These data can be compared

with similar results obtained for the LCRS (cf. LCRS1). The

analysis was performed for the SCDM and OCDM models at

z � 0, and for the LCDM model at z � 0 and z � 1.

For the core-sampling analysis a set of 196 cylinders with a

radius of 1:7 hÿ1 Mpc was prepared both in comoving and in

redshift space. The mean number of points within the cylindrical

cores amounts to ,400±600. The analysis was performed for 16

values of the cylinder radius, 1:7 hÿ1 Mpc $rcyl $ 0:7 hÿ1 Mpc.

The separation of sheet-like elements, Ds, and the surface density of

the ®lamentary component, jf � Dÿ2
f , are plotted in Fig. 4 versus

the fraction of matter f remaining after rejection of sparse structure

elements. It shows the OCDM and LCDM models in redshift space

at z � 0. The parameters typical for the reliable structure elements

are marked in Fig. 4 by dotted lines and listed in Table 3 together

with similar parameters obtained for the LCRS (LCRS1). Results

are found to be close both in comoving and redshift space, and they

coincide with the parameter range estimated for the LCRS.

In all cases there is a clear signal from the SLSS component, but

in contrast with results found for the LCRS, Ds increases slowly for

small f # �0:6±0:7�. This effect is probably caused by the variation

of the covering factor of the sheet-like component, as discussed by

Ramella et al. (1992) and Buryak et al. (1994). This effect is less

prominent for the OCDM model for which the disruption of RSE

measured by the velocity dispersions, j1, j2 and j3, is also less

signi®cant. The weak variation of Ds�f � and the quick drop of jf

with f shows that a signi®cant matter fraction (,0:4±0:5) is

associated with the high dense sheet-like component, which is

also consistent with the observational results in the LCRS (LCRS1).

A population of rich ®laments can be identi®ed in Fig. 4, but in

contrast with results from the LCRS, it is less representative. For the

SCDM model we also found a strong variation of the number of

particles from core to core. This is probably caused by the strong

disruption of structure elements.
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Figure 4. Mean separation of the RSE, Ds, and the surface density of

®lamentary component, jf , versus the matter fraction concentrated within

the structures, f , in redshift space, and at z � 0, for the OCDM (dots) and

LCDM (stars) models.

Table 3. Structure parameters with the core-sampling method in

redshift space. The threshold Nthr is the minimal richness of the

considered structure elements, Ds, Df , and Dmin
f are the mean

separation of sheet-like elements and rich and poor ®laments.

model z Nthr Ds Df Dmin
f

hÿ1 Mpc hÿ1 Mpc hÿ1 Mpc

LCRS 0. ± 55: 6 7 26:7 6 3: 10:5 6 1:

SCDM 0. 8 38: 6 9 19:2 6 3: 7:5 6 2:

OCDM 0. 6 48: 6 11 19:2 6 3: 10:0 6 3:

LCDM 0. 4 63: 6 15 26:7 6 5: 12:0 6 4:

LCDM 1. 4 45: 6 11 23:6 6 3: 7:8 6 2:



The parameters Dmin
f listed in Table 3 corresponds to the minimal

separations of ®laments found in our analysis at f ! 1. As it is

common in simulations, the identi®cation of poor ®laments is

dif®cult, and their parameters depend on the rejected background.

It is well known that for a CDM power spectrum, very small DM

pancakes form early, and the estimates of the minimum pancake

size in simulations re¯ect the resolution (in our case given by the

size of the computation cells). This means that Dmin
f listed in Table 3

generally characterizes the procedure of background rejection

rather than properties of poor structure elements. This problem

was discussed in detail by Doroshkevich et al. (1997a, 1998b). The

uncertainties in our estimates of Ds and Df are larger than those

obtained for the LCRS. This shows that simulated DM structures

are not fully consistent with the geometrical model on which the

core-sampling method is based.

The comparison of structure parameters found for the LCDM

models at z � 0 and z � 1 shows the moderate evolution of

structure which is approximately consistent with theoretical expec-

tations (DemianÂski & Doroshkevich 1999b).

6 P R O P E RT I E S O F R I C H S T R U C T U R E

E L E M E N T S

The analysis performed in Sections 4 and 5 shows that, in fact, for a

signi®cant matter fraction frse , 0:4, a strong non-linear matter

compression results in the formation of massive high-density RSE.

The existence of such RSE is a very essential feature of the large-

scale matter distribution. A more detailed analysis and the statistical

description of RSE is described in this section.

6.1 Discrimination of rich structure elements

The subsamples of RSE were identi®ed and analysed at redshift

z � 0 in comoving and redshift space for the LCDM, OCDM and

SCDM models, and for estimating the evolution, a similar sub-

sample of RSE was also analysed at redshift z � 1 for the LCDM

model. As described in Section 4, the RSE were identi®ed with rich

clusters found for a suitable linking length, rlink, and a richness

threshold, Nmem $ Nthr. The probability distribution functions dis-

cussed below depend on the de®nition of a structure element used,

and in our approach, on these two parameters. The employed

parameters of the subsamples are listed in Table 4.

In the SCDM model, RSE are de®ned with linking lengths

b3 , 0:48, that corresponds to a threshold density of clusters

nthr $ 2:1hnpi, whereas for OCDM and LCDM models b3 , 0:9

provides better results. For these samples, a signi®cant fraction

frse , 0:4 of all matter is contained in massive overdensity clumps

with Nmem $ Nthr � 200. The chosen values of b3 are about 2±4

times smaller than the percolation threshold, b3
perc, also listed in

Table 2. This means that the RSE de®ned by these thresholds are

actually isolated. Some parameters discussed below, in particular

the comoving sizes, depend on the chosen b3, and they increase for

larger b3 and/or larger Nthr.

These parameters are the basis for our selection of RSE in

simulations. A more detailed comparison of observed and simu-

lated RSE implies an identi®cation of `galaxies' in the simulated

DM distribution (see Section 8).

In the LCRS a similar fraction of galaxies, fgal , 0:4, is concen-

trated in clusters de®ned with a threshold linking length of

bÿ3 , 1±0:5, and a mean overdensity in the RSE of ,10

(LCRS2). This difference between the threshold densities of RSE

used in simulations and in the LCRS is caused in the main by the

construction of the LCRS as a set of six slices with angular size 18: 5
and the effective thickness ,�6±7� hÿ1 Mpc only.

The impact of the slice thickness was tested using the mock

catalogues prepared by Cole et al. (1998). It was found that the

random intersections of RSE with relatively thin slices result in an

arti®cial destruction of selected RSE. It is seen as the growth of the

threshold linking length required for the selection of RSE and as

stronger random variations of RSE properties with the linking

length. Thus, it was found that for the full mock catalogues about

�40±45� per cent of `galaxies' are incorporated in RSE already at

b3 , 1 which is close to the values used above. In contrast, for the

slices with angular size 18: 5 the same `galaxy' concentration in RSE

is reached for b3 , 1:5±2 which is comparable with that used for

the LCRS (LCRS2). The small slice thickness also depresses the

percolation and restricts the sizes of the richest RSE in the LCRS.

The random mixture of ®elds observed with 50 and 112 ®bres (in

four slices of the LCRS) ampli®es this arti®cial destruction of

selected RSE.

6.2 Mass functions of rich structure elements

The mass function of rich structure elements is written as

Wm �
Nmem

Np

Nrse�n�; n � Nmem=hNmemi; �6:1�

where Nmem and Np are the numbers of points in the cluster and in

the sample as a whole, Nrse is the number of RSE elements for a

given richness n, and hNmemi is the mean number of points per RSE

element. This function depends on the degree of matter concentra-

tion in RSE, and on the disruption of structures. This disruption

divides the large structure elements into a system of high-density

clumps bridged by low-density regions, and it also increases the
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Table 4. Proper sizes of rich structure elements. All mean sizes and dispersions are given by (6.2), (6.4) and Section 6.5 and are measured in

hÿ1 Mpc.

model z rlink hNmemi hli jl hqi jq hvi jv hDprwi jprw hDsepi jsep

LCRS 0 25.3 6.0 12.3 3.1 5.7 1.3 26.4 1.4 ,38. ,28.

SCDM-cm 0 0.75 731 9.2 4.0 4.3 1.4 2.7 0.6 16.4 0.6 ± ±

SCDM-rs 0 0.75 870 22.8 6.6 7.0 2.6 3.6 0.9 16.0 1.6 ± ±

OCDM-cm 0 0.95 907 24.2 7.8 12.1 4.4 6.0 1.9 17.3 1.7 40.3 30.3

OCDM-rs 0 0.95 998 24.4 6.8 12.5 3.2 7.2 1.7 18.3 1.6 37.6 28.3

LCDM-cm 0 1.0 801 14.2 6.2 6.2 2.1 3.6 0.9 22.2 1.3 68.4 63.1

LCDM-rs 0 1.0 919 21.8 5.5 9.9 2.9 5.0 1.4 23.2 1.2 64.9 57.1

LCDM-cm 1 1.0 588 19.6 6.1 7.8 1.8 4.6 1.3 21.4 1.2 79.5 64.0

LCDM-rs 1 1.0 641 19.7 4.4 9.1 2.1 4.8 1.1 21.1 0.9 76.3 62.2



fraction of low-mass elements. The rate of disruption depends on

the density contrast and, therefore, it is sensitive to the cosmological

parameters.

The mass functions are plotted in Fig. 5 for the OCDM, LCDM

and SCDM models as determined in redshift space. The general

character of the functions is very similar in these three models.

Some excess of RSE in the tail, i.e. for masses n > 3±4, are found in

the OCDM and LCDM models. The threshold richness cuts off the

distribution at small masses, and it in¯uences the value of the mean

richness of the RSE, hNmemi. The mean values are listed in Table 4

for all models under investigation.

These mass functions are in general similar to the observed one in

the LCRS (LCRS2), and at n # 6 they can also be ®tted by a simple

exponential law. In both cases, there are a few huge clusters with

mass n , 5±10 which accumulate ,10 per cent of points in the

simulations. The rejection of low-mass structure elements has a

strong in¯uence on the extent of the mass function.

6.3 The proper sizes of the rich structure elements

The proper sizes of rich structure elements are found with the inertia

tensor method, applied to the subsample of RSE. All proper sizes

depend on the mass of the RSE. The scaling can be approximated by

L � n1=3l; w � n1=3q; t � n1=3v; �6:2�

,0:2 # n � Nmem=hNmemi # 7:

The mass-averaged length hli, width hqi and thickness hvi of

clusters are listed in Table 4 together with the corresponding

dispersions. Scatter plots of these values versus the richness of

RSE n for the LCDM model are shown in Fig. 6. The distributions of

proper sizes l, q, and v, are similar to Gaussian distributions with

mean values and dispersions listed in Table 4.

The scaling (6.2) describes well the mass dependence of the

proper sizes that results from the relatively regular shape of RSE

and the moderate in¯uence of boundary effects. In the LCRS a

similar scaling is found for the two larger sizes, whereas the small

size is weakly dependent on the richness (LCRS2). This is probably

caused by the special construction of the LCRS as a set of thin

slices. The strong richness dependence found for the Durham/

UKST redshift survey (Doroshkevich et al. 1999) could be caused

by the relatively small size of the survey.

Results listed in Table 4 show that for the OCDM and LCDM

models, all proper sizes are found to be close (in the range of the

dispersion) to the sizes observed in the LCRS. Moderate variations

of the threshold linking lengths do not change the mean character-

istics of the RSE, but the sizes of the largest structure elements are

sensitive to such variations.

For the SCDM model, all mean proper sizes in redshift space

exceed the sizes found in comoving space. These differences

become smaller for the LCDM and the OCDM models, and they

decrease with increasing redshift as is shown by the comparison of

the LCDM model at z � 0 and z � 1. It is explained, in part, by the

well known in¯uence of the velocity dispersion (`®nger of God

effect'). This effect also depresses the small-scale clustering,

however, and, apparently, partly cancels the disruption of large

structure elements typical for the non-linear evolution of pancakes.

This is clearly seen in the growth of the mean length hli, which
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Figure 5. Mass function, Wm, for the OCDM, LCDM and SCDM models in

redshift space. Samples and model parameters are listed in Tables 1, 2 and 4.

Figure 6. The proper sizes of the RSE, l=hli;q=hqi and v=hvi, and the size of

`proto-walls', Dprw=hDprwi, versus the mass (richness) of the element,

n � Nmem=hNmemi, for the LCDM model in redshift space at z � 0.



exceeds any velocity dispersions and, therefore, is insensitive to the

`®nger of God' effect. In contrast, the in¯uence of the small-scale

clustering on the thickness of structure elements is not so strong,

and its growth in redshift space is probably caused by the direct

in¯uence of small-scale velocities. Hence, we can take the value hLi

in redshift space as a genuine diameter of the RSE, and the value hti

from comoving space as real thickness. For the middle size, hwi,

both effects can be important.

6.4 The `proto-size' of the rich structure elements

The measured parameters of RSE allow us also to estimate the

volume which initially contained all matter in RSE, and the degree

of compression connected with its formation. A simple model was

used for this estimate in LCRS2. As the lengths of the RSE exceed

the two other sizes, we can neglect the matter compression along

this axis, and we can consider the RSE formation as a 2D matter

infall to the gravitational well. In this case we can obtain a simple

estimate using mass conservation:

hnrsetwi < hnpiht0w0i < hnpiL
2
prw; �6:3�

L2
prw �

6Nmem

pLhnpi
; Lprw # L ;

where nrse and hnpi are the comoving number density of particles

within the RSE and in the sample as a whole, respectively, t and w

are the thickness and width of the RSE, and t0, w0 and

Lprw �
���������
w0t0

p
are the typical sizes of the `proto-structures', de®ned

in the initially almost homogeneous matter distribution. The mass

dependence can be described similarly to equation (6.2):

Lprw � n1=3Dprw: �6:4�

The distributions of Dprw are also similar to Gaussian distribu-

tions with the mean values, hDprwi, and dispersions, jprw, listed in

Table 4. The comparison of q and v with Dprw shows that at z � 0

the RSE formation can be roughly described as an asymmetric

matter compression by a factor of ,2 along the middle axis (w), and

a factor of ,4±5 along the shorter axis (t). At z � 1 the correspond-

ing compression factors are ,1.5 times smaller. For the high-

density clumps at redshift z � 3 in the LCDM model the size of

the `proto-structures' is

Lprw�z � 3� < �18 6 3:5�hÿ1Mpc: �6:5�

The values Dprw are plotted in Fig. 6 for given samples of RSE of

the LCDM model. The parameters are very stable, in particular,

they depend only weakly on the sample under investigation, and on

the linking length, since usually the growth of the cluster sizes is

accompanied by a drop in the number density. They are sensitive to

the possible bias between the spatial distribution of DM and

galaxies, however.

6.5 The mean separation of the structure elements

The mean separation of RSE can be found, applying a simple

version of the core-sampling method for subsamples of RSE. A

sample of 250 rectangular cores with sides 10 hÿ1 Mpc´
10 hÿ1 Mpc, oriented along one axis (the axis where the redshift

distortions are added) and containing all particles of RSE, was

prepared for the LCDM and OCDM models both in comoving and

in redshift space for z � 0 and for the LCDM model at z � 1. All

particles are projected on the axis of the cores, and they are

collected in clusters with the linking length, rlink, used for the

RSE preparation (Table 4). The mean separation between these

clusters (the `mean free-path' between the RSE), hDsepi, and the

dispersions, jsep, are listed in Table 4. The large dispersion ± more

than 50 per cent of the mean value ± is typical for an exponential

Poisson-like distribution. The frequency distribution of cluster

separations is plotted in Fig.7 together with the best exponential

®t. The mean separation of the RSE depends weakly on the redshift,

and it is consistent with the mean separation of wall-like elements

found with the core-sampling approach in Section 5. For the OCDM

model the numerical estimates are consistent with that found in the

LCRS (cf. LCRS2), but for the LCDM model they exceed the

observed values by a factor of ,1.5.

The mean separation of RSE (or the 1D number density) allows

us to obtain an independent estimate of the relative richness of RSE

for a given subsample, i.e. for some linking length b and threshold

Nthr, or a certain matter fraction in RSE, frse. The difference found

above for the LCDM model indicates that in this case the same

fraction of particles is concentrated in a smaller number of RSE. To

eliminate this difference, a threshold richness Nthr , 150 could be

used, which has small effects on the other parameters of RSE.

The mean separations between structure elements of the ®la-

mentary component and their dispersions, hDfi and jD, can be

found through a similar analysis of subsamples prepared by

removing all RSE from the full sample. We obtain

hDfi , 9 hÿ1 Mpc, jD , 6:5 hÿ1 Mpc, for the OCDM model, and

hDfi , 14 hÿ1 Mpc, jD , 10:5 hÿ1 Mpc, for the LCDM model.

This data agree well with the value Dmin
f listed in Table 3 for the

LCRS.

6.6 Inner structure of RSE and LDR

The point distribution in a sample can be characterized with the
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Figure 7. The frequency distribution hDsepidW=dDsep of separation of the

RSE in comoving (panels a and c) and redshift (panels b and d) space at

z � 0 (panels a and b) and z � 1 (panels c and d). The exponential ®ts are

shown by dotted lines.



NCLL and the MST techniques as described in Section 3. These

methods allow us to discriminate between the dominance of

®lamentary and sheet-like structures in a point sample, and to

characterize the point distribution within separate structure

elements. In this sense, the methods are complementary to the

core-sampling approach. Thus, for the ®lamentary component,

power indices pt and pMST , 1 can be expected, whereas for the

sheet-like component, the appearance of power indices

pt and pMST , 2 seems to be more typical.

Here we apply these methods to the LCDM model. We analyse

separately the full sample, the RSE, and the LDR, the latter are

obtained by removal of RSE from the full sample. The main results

are presented in Figs 8 and 9, and they are collected in Table 5,

where hlMSTi is the mean edge length of the MST and

bMST �
4p

3
hnpi

� �1=3

hlMSTi: �6:6�

Here hnpi is the mean number density in the sample under

consideration.

The FDMST are plotted in Fig. 8 for the full sample and for the

RSE and LDR, both in comoving and in redshift spaces, and at

z � 0. The variation of the power indices versus the edge lengths

is plotted in Fig. 9. The left-hand side of the FDMST describes

the matter condensation within high-density clumps that form the

inner structure of ®laments and walls. It is similar for all

subsamples. The right-hand side of the FDMST characterizes

the relative positions of these clumps and other particles of the

subsamples.

These ®gures demonstrate that in the comoving space for all

samples, pMST , 1 for edge lengths l=hlMSTi $ 0:5±1. The NCLL

method con®rms that pt , 1 is reached for b $ 0:5, this is about 1.6

times smaller than b , 0:8 used for the RSE discrimination, and

,2.5 times smaller than the value bperc listed in Table 2. These

values emphasize the joint character of the point distribution both

within RSE and LDR which can be interpreted as a predominantly

1D Poisson distribution typical for ®laments. The mean edge length

of the MST, hlMSTi, in the RSE is ,2±3 times smaller than within

LDR but variations of bMST do not exceed ,20 per cent. In redshift

space the impact of the velocity dispersion erases the small-scale

structure of RSE. Therefore we ®nd an apparent particle distribution

similar to a 2D Poisson distribution.

The characteristics obtained both with the NCLL and MST

methods are similar to each other within the range of statistical
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Figure 8. The frequency distribution of the edges of MST for the LCDM

model. Samples are marked and sample parameters are listed in Table 5. The

®t of FDMST to relation (3.1) is shown by the solid line.

Figure 9. Variations of power indices pMST for the same samples of the

LCDM model as in Fig. 8. Sample parameters are listed in Table 5. The ®t of

FDMST to relation (3.1) is shown by the solid line.

Table 5. Fit parameters for the FDMST and for the cluster

distribution, pt, for full samples, RSE and LDR for the LCDM

model.

sample hlMSTi bMST pMST pt

hÿ1 Mpc

z � 0, comoving space

a TOT 0.72 0.72 0:60 6 0:02 0:59 6 0:03

b RSE 0.30 0.62 1:11 6 0:02 1:02 6 0:05

c LDR 1.00 0.80 0:83 6 0:02 0:99 6 0:03

z � 0, redshift space

d TOT 0.78 0.78 0:91 6 0:03 0:85 6 0:04

e RSE 0.42 0.83 1:60 6 0:04 1:83 6 0:03

f LDR 1.00 0.80 1:11 6 0:03 1:11 6 0:02

z � 1, comoving space

TOT 0.90 0.90 0:76 6 0:03 0:97 6 0:03

RSE 0.35 0.69 1:0 6 0:03 1:30 6 0:05

LDR 1.00 0.80 0:87 6 0:03 1:10 6 0:02

z � 1, redshift space

TOT 0.91 0.91 0:97 6 0:02 1:02 6 0:02

RSE 0.45 0.89 1:4 6 0:05 1:93 6 0:02

LDR 1.00 0.80 1:1 6 0:03 1:20 6 0:03



uncertainty. In any case, independent of the geometrical interpreta-

tion, the power indices and typical scales that characterize the spatial

matter distribution in the RSE and LDR are essentially different, and

this veri®es the accepted discrimination of these regions. These results

agree well with estimates of the mean overdensity, drse, listed in Table

2 and obtained in other way. They con®rm the essential concentration

of high density clumps in RSE.

The results obtained for the LDR are consistent with the

dominance of a ®lamentary component. For the RSE, the unex-

pected value of the power index in the comoving space can be

considered as an indirect evidence in favor of RSE formation from

earlier formed ®laments. It can also be traced back to different

factors, such as the wall disruption and the limited resolution of

simulations and, therefore, further investigations are required.

In the LCRS a power index pt , pMST , 1:7 has been found for

RSE, and pt , pMST , 1 for LDR and for the total sample (LCRS2).

This is comparable with our results for the redshift space listed in

Table 5. The complicated inner structure of RSE is also seen in the

LCRS and, more clearly, in the galaxy distribution within the Great

Wall (®g. 5 in Ramella, Geller, & Huchra 1992).

7 C H A R AC T E R I S T I C S O F T H E E X P E C T E D

A N D S I M U L AT E D D M S T R U C T U R E

The reproduction of the main observed characteristics of the RSE in

simulations with a standard CDM-like power spectrum veri®es that

the observed structure was formed during the non-linear evolution

of small initial perturbations, and, therefore, the characteristics of

structure can be expressed through the parameters of a suitable

initial power spectrum of Gaussian ¯uctuations for a speci®c

cosmological model. Statistical characteristics of the DM structure

based on Zel'dovich's non-linear theory of gravitational instability

(Zel'dovich 1970,1978; Shandarin & Zel'dovich 1989) were dis-

cussed by DemianÂski & Doroshkevich (1999a,b). The approximate

expressions derived therein connect some of these characteristics to

the parameters of the cosmological model. The comparison of the

approximate analytic results and the simulations reveals both the

in¯uence of factors omitted in the theoretical description and

random factors distorting the simulated structure.

The surface density of RSE and velocity dispersions within RSE,

and the velocity of structure elements seem to be most interesting.

These values can be found using the simple version of core-sampling

described in Section 6.5. We characterize the mass of each cluster

within the rectangular sampling cores by the surface density of

structure elements, mw, and the velocity dispersion within clusters

also along the core, jr . These values can be found for the RSE. We

consider also the dispersion of 1D velocity of clusters along the core,

jq, which can be found for the full samples, and for the RSE and the

®lamentary subsamples of structure elements separately. Some of

these characteristics can be compared with similar 3D characteristics

discussed above for RSE that demonstrate the in¯uence of the sample

selection and the averaging procedure.

The theoretical parameters are expressed through the typical

length-scale, l0, linked to the initial power spectrum, and typical

dimensionless `time', t0, linked to the velocity dispersion, jvel, and

the parameter j8 listed in Table 1 as

lÿ2
0 �

�kmax

kmin

kT�k�dk; l0 <
6:6

Qmh
hÿ1Mpc;

t0 �
jvel���
3

p
bl0H0

; b < �0:43 � 0:57Qm�
ÿ1; �7:1�

t0 � 0:55j8�Qmh�0:438 1 � 5:657�Qmh�1:4
� �0:562

;

where k is the comoving wave number, kmin � 2p=Lbox;

kmax � kminN1=3
cell, and T�k� is a transfer function. The `time' t0

characterizes the amplitude of perturbations and the reached period

of structure evolution. For the SCDM, OCDM and LCDM simula-

tions we have

l0 � 13:2; 22; and 26:9 hÿ1Mpc;

t0 � tvel � 0:43; 0:27 and 0:37 �7:2�

t0 � t8 � 0:81; 0:31 and 0:46:

and differences between values tvel & t8 characterize the sensitivity

of various estimates of amplitude to the small scale matter cluster-

ing. The velocity dispersions jr and jq are given in km sÿ1. For

Gaussian initial perturbations the distribution of pancake velocities

along a core is expected also to be Gaussian with a negligible mean

velocity and a dispersion

jq < jvel=3 � H0l0bt0=
���
3

p
: �7:3�

Here a random orientation of pancakes with respect to the sampling

cores is taken into account.

In this case the distribution of surface density of RSE, mw, can be

expressed as follows:

Nw �
aw���

x
p eÿxerf �

���
x

p
�; x �

bwmw

hmwi
; �7:4�

mw �
hmwi

bwhnpil0

< 8�0:5 � 1=p�t2
0 � 6:6t2

0;

where aw and bw are ®t parameters. The expected distribution of

the ®lamentary component is described by a more cumbersome

relation.

An expression like (7.4) with parameters ar and br and

x � brjr=hjri also describes the distribution of the 1D inner velocity

dispersion along the core, jr. For RSE this dispersion can be

expressed through l0 and t0 as

mr �

��������
hj2

r i
p

brH0l0b
<

1

2
���
3

p hmri

hnpil0

<
3:3t2

0���
3

p < t0

3:3jq

H0l0b
: �7:5�

Using this relation we can measure the mean surface mass density

of RSE hmri by the velocity dispersion.

These relations allow us to estimate the model parameters l0 and

t0 using the measured surface density of RSE hmwi, the velocity

dispersion within RSE, jr , and the velocity dispersions of various

populations of structure elements, jq. To suppress the impact of

small-scale clustering, the analysis was performed for the subsam-

ple of RSE with the core side 10 hÿ1 Mpc. Because of the small

separation of ®laments, for the full sample and subsample of LDR,

discussed in Section 6.6, a core side 4 hÿ1 Mpc was used.

For RSE the measured distributions of surface density , mw, and

velocity dispersion, jr , are plotted in Figs 10 and 11 together with

the best ®ts (7.4). The measured parameters are listed in Table 6, the

theoretical expectations are given by equation (7.2). The distribu-

tion of pancake velocities is well ®tted to the Gaussian function with

dispersion jq listed in Table 6.

These velocity dispersions are smaller by about 20 per cent than

those listed in Table 2, which demonstrates the in¯uence of

averaging procedures in obtaining the ®nal parameters.

The values t0, averaged over the measurements listed in Table 6,

are

ht0i < 0:58 6 0:09; <0:29 6 0:03; <0:40 6 0:05; �7:6�
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for the SCDM, OCDM and LCDM models. Differences between

these values and estimates of t0 given in (7.2) characterize the

in¯uence of random factors such as the selection and disruption of

structure elements and the real precision reached.

The measured distributions of the surface density of RSE are also

well ®tted by power laws with exponents k , 1:7 that may result

from the strong wall disruption. The power law can be reproduced

analytically, assuming a set of clusters with spherically symmetric

surface densities falling off according to a power law jcls ~ rÿg. In

this case the mass function of clusters in cores is also expressed by a

power law as

Ncordmw ~ jclsrdr ~ j
ÿ2=g
cls djcls; �7:7�

with an exponent k � 2=g. For k , 1:7 we have g , 1:2, which is

close to the well-known King's law, jcls ~ �1 � r2=r2
c �

ÿ1=2; g , 1,

widely used to ®t to the density pro®les of elliptical galaxies.

8 A N A LY S I S O F M O C K C ATA L O G U E S

For a DM-dominated universe the analysis of DM structures is very

important in itself as the feedback of baryonic matter and galaxy

formation to the DM evolution on scales larger than the mean

intergalactic separation is small. On the other hand, almost all

observed characteristics of the large-scale structure are obtained for

the galaxy distribution alone, and the galaxy distribution may be

biased in comparison with the distribution of DM. Further, all

observed galaxy catalogues suffer from selection effects that

in¯uence our cosmological conclusions.

The selection effects are well studied and reproduced in available

mock catalogues (see, e.g., Cole et al. 1998). A preliminary analysis

of these catalogues reveals, for example, some distortions of

observed parameters of RSE caused by the small angular size of

the LCRS (see discussion in Section 6). More detailed analysis of

these catalogues with the technique described above is in prepara-

tion. It allows us to ®nd the optimal strategy of data analysis that

suppresses the in¯uence of selection effects.

A much more complicated problem is the possible bias between the

DM and the galaxy distribution. The properties of large-scale struc-

tures are moderately sensitive to the small-scale bias (BBKS; Coles

1993; for review, Sahni & Coles 1995), but available observations

show that the spatial distribution of DM and luminous matter can be

biased on large scales as well. Indeed, while on one hand in clusters of

galaxies the observed ratio of galaxy and baryonic densities is found

to be rgal=rgas , 0:2 (see, e.g., White, Briel & Henry 1993), on the

other hand, for example within the Bootes Void, rgal=rgas ! 0

(Weistrop et al. 1992). The existence of `invisible' structure elements,

which are now seen as gas clouds responsible for weak Lya absorp-

tion lines situated far from galaxies (,5±6 hÿ1 Mpc ± Morris et al.

1993; Stocke et al. 1995; Shull, Stock & Penton 1996) can also be

considered as evidence in favour of a large-scale bias.

Such a large-scale bias could be produced by the UV radiation from

the ®rst galaxy population during the reheating of the Universe (Dekel

& Silk 1986; Dekel & Rees 1987). Quantitative estimates (DemianÂski

& Doroshkevich 1999a, b, c) show that it can increase the galaxy

concentration within the RSE by about a factor of 1.5±2. Indirect
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Table 6. Characteristics of mass and velocity distributions in comoving

space for the full samples, RSE and LDR for the SCDM, OCDM and LCDM

model. mr � hmri=�hnpil0� < 8t2
r , mw � hmwi=�hnpil0� < 8t2

w, the velocity

dispersions jr and jq are given in km sÿ1.

sample jq jr mw tw mr tr tq

SCDM

TOT 501 230 ± ± 0.66

RSE 442 492 1.4 0.50 1.29 0.44 0.65

LDR 508 151 ± ± ± ± 0.66

OCDM

TOT 263 98 ± ± ± ± 0.30

RSE 245 250 0.8 0.35 0.41 0.25 0.28

LDR 277 76 ± ± ± ± 0.32

LCDM

TOT 360 155 ± ± ± ± 0.42

RSE 351 412 1.3 0.44 0.63 0.31 0.40

LDR 374 119 ± ± ± ± 0.44

Figure 10. The distribution of the mass surface density of RSE. The best ®t

(7.3) is shown by solid lines, the best-®tting power law is plotted by dotted

lines.

Figure 11. The distribution of velocity dispersions jr for the RSE. The best

®t (7.3) is shown by solid lines.



evidence in favor of such a bias was found in simulations by Sahni,

Sathyaprakash & Shandarin (1994) as a suppression of structure

formation in large regions around the maxima of gravitational

potential, and by Doroshkevich, Fong & Makarova (1998) as a

difference in the characteristics of spatial distribution of the rare

high peaks identi®ed as `galaxies' and of the main fraction of structure

elements in simulated DM distributions. This bias can be essential for

reliability of discrimination between cosmological models.

Unfortunately, such large-scale bias cannot be simulated yet,

since simulations of the galaxy formation in large boxes with the

required resolution are impossible. This means that a bias can only

be introduced by hand using simple plausible assumptions. Some

such models as discussed by Cole et al. (1998) increase the `galaxy'

concentration within RSE. More detailed tests of these models will

be discussed separately.

Here we restrict our consideration to the analysis of simple mock

catalogues prepared for the OCDM model. With the spatial and

mass resolutions of our simulations (,1011 M(), we are compelled

to identify `galaxies' with selected DM particles. Four mock

samples with different clustering properties were prepared and

investigated. The simplest sample mock1 was constructed with a

threshold prescription depending on the local environmental den-

sity within a sphere of 1 hÿ1 Mpc around the particles. No `galaxies'

are identi®ed with particles with local density smaller than the mean

density, and `galaxy' tracers are selected randomly from the

particles in overdense regions. The other catalogues use a smooth

probability distribution proportional to the local environmental

density within the same scale. The constant of proportionality

was chosen to vary the degree of clustering of the mock samples,

i.e. to get an autocorrelation function of simulated `galaxies' in broad

agreement with data (for the LCRS, cf. e.g. Tucker et al. 1997). The

catalogues were normalized to the mean number density of galaxies,

ngal , 2 ´ 10ÿ2 h3 Mpcÿ3, which is equivalent to the observed galaxy

density with a limiting magnitude of about MR � ÿ18.

The sample mock1 with the threshold bias shows weakly

enhanced clustering of the mock `galaxies' with respect to the

dark matter: the correlation function in redshift space shows a

power law �r=r0�
ÿg with a correlation length r0 � 6:5 hÿ1 Mpc and a

slope g � 1:4. The correlation length of DM, also in the redshift

space, is r0 � 5hÿ1 Mpc, and the slope is g � 1:3.

The impact of the local environment allows to vary the clustering

and to obtain mock samples with different properties. Thus, the

weakly clustered sample mock2 is similar to mock1 (correlation

length in redshift space r0 � 6 hÿ1 Mpc, slope g � 1:4� while

mock3 is intermediate (r0 � 7 hÿ1 Mpc, g � 1:5) and mock4

strongly clustered (r0 � 8 hÿ1 Mpc, g � 1:6). For the sample

mock2, we impose an additional threshold of no `galaxy' identi®ca-

tion for lower than mean density. We discuss such mock catalogues

in our rectangular slices, which allow a direct comparison with the

DM catalogue studied above. It demonstrates directly the in¯uence

of bias models. This is most important as a ®rst step of the analysis

of the in¯uence of bias. The selection criteria required for the more

detailed comparison with observed catalogues such as the LCRS

(cf. the mock sample for LCDM presented in Fig. 1) will be

imposed as a next step in a separate paper. The simple models

described above reproduce only some features of the large-scale

bias and serve mainly as illustration of the potential of the statistics

used for the bias discrimination. More realistic models would be

sensitive to a broader density environment of particles, i.e. they

should be able to follow in more detail the expected interaction of

large- and small-scale perturbations. Such models will be studied

and discussed separately.

The ®rst step of our analysis repeats the approach utilized in

Section 4 to de®ne the sample of RSE with the required richness and

overdensity. Such sets of RSE were found in redshift space for all

four mock catalogues with the parameters listed in Table 7. For all

mock catalogues the threshold density of RSE was ,30 per cent

larger than that for the DM catalogue. For the mock1 and mock2

catalogues, the small value of Nthr requires that the reproduction of a

suf®cient `galaxy' concentration within the RSE is also accompa-

nied by a relatively low overdensity of RSE. Even so, the over-

density is found to be at least twice as large as for the corresponding

DM catalogue (see Table 2), and it is comparable with the over-

density found for the LCRS. For mock3 and mock4 catalogues, the

parameters of RSE are similar to each other, and to that found for

the LCRS, and the overdensities reached are about three times

larger than for the DM catalogue. For all mock catalogues the

velocity dispersions are the same as those found for DM RSE. These

results alone show that the models of bias used provide an essential

excess of `galaxy' concentration within the RSE and, therefore, can

be considered as a reasonable basis for further more detailed

investigations.

The proper sizes of rich structure elements are found with the

inertia tensor method, applied to the subsample of RSE. All proper

sizes depend on the mass of the RSE. For all mock catalogues the

scaling can be approximated by

L � n0:43l; w � n0:46q;

t � n0:44v; Lprw � n0:33Dprw; �8:1�

, 0:3 # n � Nmem=hNmemi # 25:

The mass-averaged length hli, width hqi, thickness hvi and the size

of `proto-wall', Dprw, are listed in Table 8 together with the

corresponding dispersions. The stronger scaling found for the

mock catalogues compared with the DM catalogue is also caused

by the biasing and therefore this approach can also be used to

discriminate between bias models. The main parameters of RSE

listed in Table 8 are close to those listed in Table 4 for the OCDM

model in redshift space. The shape and power indices found for the

FDMST are also close to those listed in Table 5. As before, in

comoving space the 1D character of the `galaxy' distribution

dominates, i.e. the exponent pMST , 1, whereas in redshift space

the `galaxy' distribution within RSE is similar to a 2D Poissonian

distribution with the exponent pMST , 2.

These results show that the discussed methods reveal the in¯u-

ence of the bias models used. The impact of bias is also essential for

the less massive structure elements, and especially for the matter

and `galaxy' content in `voids'. These regions will be investigated

further with the MST technique in a separate study.

9 S U M M A RY A N D D I S C U S S I O N

In this paper the properties of simulated spatial matter distributions

were studied for ®ve cosmological models with CDM-like power
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Table 7. Parameters of RSE in mock catalogues in redshift space.

model rlink b3 Nthr Nrse frse drse

hÿ1 Mpc

mock1 2.1 0.626 30 830 0.44 7.7

mock2 2.0 0.586 35 792 0.43 9

mock3 1.7 0.554 50 863 0.45 11

mock4 1.9 0.563 70 509 0.45 14



spectra. The main parameters of the simulations are listed in Table 1.

The simulations were performed in large boxes in order to repro-

duce correctly the mutual interaction of large- and small-scale

perturbations, and to obtain a representative sample of wall-like

RSE. The broad set of cosmological models considered allows us to

reveal the in¯uence of main cosmological parameters on the

formation and evolution of the wall-like RSE, and to discriminate

between these models. Our results show that the methods utilized in

this paper are effective, and they yield a description of the spatial

matter distribution on large scales and, in particular, the character-

istics of the RSE.

9.1 Main results

The main results of our analysis can be summarized as follows.

(i) Simulations performed with the standard COBE-normalized

CDM-like power spectrum reproduce well both the wall-like RSE

and the ®lamentary component of structures in LDR. Each compo-

nent accumulates an essential fraction of matter, and is equally

important for the description of the joint network structure in the

large-scale matter distribution.

(ii) The phenomenon of strong matter concentration within the

wall-like rich structure elements can also be reproduced for suitable

cosmological models. An essential fraction of DM, frse , 0:4, is

compressed non-linearly on the scales ,17±25 hÿ1 Mpc, i.e. less

than the mean separation of these RSE by a factor of ,2±3.

(iii) The RSE are usually disrupted into a system of high-density

clumps, which results in the growth of the inner velocity dispersion.

The rate and the degree of disruption depend on the parameters of

the cosmological models.

(iv) The comparison of observed and simulated parameters of the

wall-like RSE allows us to discriminate between different cosmo-

logical models and to reveal the class of models that can reproduce

the main observed characteristics of the wall-like RSE. These

models are the LCDM model with Qmh , 0:15±0:25 and the

OCDM model with Qmh , 0:25±0:35. Perhaps promising results

can also be reached for MDM models with similar parameters.

(v) A large-scale bias between the spatial distribution of DM and

galaxies can increase the galaxy concentration within RSE by a

factor of about 2 which essentially improves the simulated char-

acteristics of RSE. The technique used above allows us to reveal

reliably the in¯uence of the biasing and to discriminate between

bias models.

(vi) The simulated parameters of DM structure are consistent

with the theoretical expectations. The main cosmological para-

meters can be successfully reconstructed using the measured

properties of the large-scale matter distribution. After correcting

for the bias and for selections effects, these methods can be applied

to observed galaxy catalogues.

(vii) Our results verify also the theoretical expectations with

respect to the epoch of the RSE formation. At z � 1 the fraction of

matter accumulated by RSE with the chosen richness and over-

density drops by a factor ,2, and at z � 3 it becomes negligible.

The main statistical characteristics of the RSE are listed in Tables

2±5 in comparison with the properties found for the observed

galaxy distribution. These results verify the existence of a wall-

like component with similar characteristics in both observations

and simulations performed for suitable models. A similar range of

cosmological models was recently separated by Cole et al. (1997)

and by Bahcall & Fan (1998) from a comparison of observed and

simulated properties of clusters of galaxies. The observations of

supernovae at high redshifts (Perlmutter et al. 1998) are more

consistent with the LCDM model with Qm , 0:3.

Currently, there is some observational evidence of large matter

inhomogeneities at redshifts z , 0:5±1 and higher (Williger at al.

1996; Cristiani et al. 1996; Quashnock, Vanden Berk & York 1996,

1998; Connolly et al. 1996). Our analysis shows that for the models

considered, these structures cannot be as common as at small

redshifts. A more detailed statistical description of the absorption

spectra of quasars is required to obtain the characteristics of

structures at high redshifts.

At small redshifts further progress in investigations of observed

large-scale matter distribution is linked with very large galaxy

redshift catalogues as the 2dF redshift survey of 250,000 galaxies

(Colless 1999) and the million galaxy Sloan Digital Sky Survey

(Loveday & Pier 1998). The available surveys used above for the

comparison with simulated structure parameters (the Durham/

UKST Galaxy Redshift Survey, Ratcliffe et al. 1996; and the Las

Campanas Redshift Survey, Shectman et al. 1996) are not so

representative and moreover they are limited in use to speci®c

selection effects (see discussion in Sections 6.1 and 6.3). In spite of

this, now and within the next few years results obtained with these

surveys provide us with the best characteristics of observed large-

scale matter distribution.

9.2 Remarks about the method

The study of simulations is currently the best way for understanding

the large-scale matter distribution. The large boxes used for

simulations allow us to obtain a representative description of

large-scale perturbations and their mutual interactions with pertur-

bations on smaller scales, as well as to obtain a representative

statistic of RSE. Both factors are equally important for the success-

ful reproduction of the matter distribution observed in large galaxy

surveys.

The analysis of six simulations performed by Madsen et al.

(1998) shows that simulations reproduce the theoretical distribu-

tions only on the scales ,0:1±0:15�Lbox. This means that realistic
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Table 8. Proper sizes of RSE in mock catalogues. All mean sizes and dispersions are given by (6.2), (6.4) and Section 6.5 and are

measured in hÿ1 Mpc.

model rlink hNmemi hli jl hqi jq hvi jv hDprwi jprw hDsepi jsep

LCRS 25.3 6.0 12.3 3.1 5.7 1.3 26.4 1.4 ,38 ,28

mock1-rd 2.1 108 20.1 4.9 10.6 2.0 6.0 1.4 23.0 1.2 62 57

mock2-rd 2.0 119 19.3 4.4 10.5 2.1 5.9 1.4 23.2 0.9 53 57

mock3-cm 1.9 179 18.5 6.2 8.4 2.7 4.6 1.3 22.8 1.2 51 53

mock3-rd 1.7 174 18.3 4.5 9.4 2.2 5.1 1.4 22.9 0.9 49 54

mock4-rd 1.9 218 21.0 5.1 10.7 2.5 5.4 1.8 27.5 0.8 57 64



simulations of the observed large-scale matter distribution are

possible for Lbox $ �400 ÿ 500� hÿ1 Mpc, whereas for smaller box

sizes random variations of parameters of large-scale structure are

expected.

The analysis was performed mainly for rectangular slices with

the size �500 ´ 500 ´ 50� hÿ3 Mpc3 which accumulate about 10 per

cent of the particles. Such an approach allows us to study a broad set

of cosmological models with a reasonable precision and represen-

tativity. To test the possible impact of the selection used, the

analysis was repeated for the full simulated sample of the LCDM

model in comoving coordinates. The results are consistent with

what was found above, and the difference is less than 10 per cent.

The comparison of results obtained for two LCDM models also

shows the difference between the structure parameters and the

velocity dispersions ,10 per cent. Variations of jvel and j8 listed in

Table 1 are also ,10 per cent. These results characterize the actual

precision reached in the investigation, and show that even for large

boxes the main structure parameters are moderately sensitive to the

random realization.

The comparison of the data presented with data of a similar

simulation (Cole et al. 1997) performed with higher resolution

(P3M code) demonstrates the moderate dependence of the main

simulated structure parameters on these factors. The properties of

high-density clumps are sensitive to the resolution that distorts the

FDMST for smaller lengths (in comoving space). These distortions,

however, disappear in redshift space. The same factor increases the

simulated velocity dispersion. The main quantitative characteristics

of the RSE are nonetheless suf®ciently stable.
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